LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on Influencing Factors of High-Temperature Basic Characteristics of Iron Ore Powder and Optimization of Ore Blending

Photo from wikipedia

In order to explore the reasonable ore blending of low-silicon magnetite in sintering, it I necessary to realize the efficient utilization of low-silicon ore, further reduce cost, and increase yield.… Click to show full abstract

In order to explore the reasonable ore blending of low-silicon magnetite in sintering, it I necessary to realize the efficient utilization of low-silicon ore, further reduce cost, and increase yield. In this study, based on the high-temperature basic characteristics of iron ore powder used in the experiment, sinter pot tests were carried out with different low-silicon ore ratios, and the microstructure of the sinter was observed by scanning electron microscopy (SEM) and energy spectrum analysis (EDS) to determine the optimal matching law of low-silicon ore. The result showed that SiO2, Al2O3, and burning loss in iron ore powder composition were positively correlated with its assimilation, whereas MgO and basicity R2 were negatively correlated with the assimilation of iron ore powder. When the ratio of low-silicon ore was not more than 35%, increasing the ratio of hematite improved the liquid production and increased the production of acicular calcium ferrite. Therefore, the optimization of ore blending based on assimilation can improve the quality of sinter and strengthen the sintering process. This study has certain reference significance for the industrial production of low-silica sintering.

Keywords: ore blending; low silicon; iron ore; ore powder

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.