In this paper, the corrosion mechanism of commercial alumina-spinel refractory was investigated at 1350 and 1450 °C. Disc samples were coated with shells of two different slags containing 4 and… Click to show full abstract
In this paper, the corrosion mechanism of commercial alumina-spinel refractory was investigated at 1350 and 1450 °C. Disc samples were coated with shells of two different slags containing 4 and 10 wt.% SiO2. The after-corrosion refractory was investigated in view of changes in its microstructure and phase composition by SEM/EDS and XRD techniques, respectively. At 1350 °C slags slightly infiltrated the microstructure, whereas at 1450 °C slags infiltrated the alumina-spinel refractory causing its significant corrosion. As a result of corrosion, new phases were formed, including calcium dialuminate (Ca2Al4O7), calcium hexaluminate (CaAl12O19), and gehlenite (Ca2AlSi2O7). Formation of calcium aluminate layers in the microstructure of the refractory inhibited further dissolution of alumina aggregates; however, expansive behavior of CaAl12O19 raised the microstructure porosity. The additional SiO2 in the slag doubled the amount of low melting gehlenite in the matrix, accelerating the corrosion process of alumina-spinel brick at high temperatures.
               
Click one of the above tabs to view related content.