LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Burst Pressure Prediction of Subsea Supercritical CO2 Pipelines

Photo from wikipedia

To improve transportation efficiency, a supercritical CO2 pipeline is the best choice for large-scale and long-distance transportation inshore and offshore. However, corrosion of the pipe wall will occur as a… Click to show full abstract

To improve transportation efficiency, a supercritical CO2 pipeline is the best choice for large-scale and long-distance transportation inshore and offshore. However, corrosion of the pipe wall will occur as a result of the presence of free water and other impurities present during CO2 capture. Defects caused by corrosion can reduce pipe strength and result in pipe failure. In this paper, the burst pressure of subsea supercritical CO2 pipelines under high pressure is investigated. First, a mechanical model of corroded CO2 pipelines is established. Then, using the unified strength theory (UST), a new burst pressure equation for subsea supercritical CO2 pipelines is derived. Next, analysis of the material’s intermediate principal stress parameters is conducted. Lastly, the accuracy of the burst pressure equation of subsea supercritical CO2 pipelines is proven to meet the engineering requirement by experimental data. The results indicate that the parameter b of UST plays a significant role in determining burst pressure of pipelines. The study can provide a theoretical basis and reference for the design of subsea supercritical CO2 pipelines.

Keywords: subsea supercritical; supercritical co2; co2 pipelines; burst pressure

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.