LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulations and Experiments on the Micro-Milling Process of a Thin-Walled Structure of Al6061-T6

Photo from wikipedia

Aluminum alloy (Al6061-T6) is an alloy with strong corrosion resistance, excellent disassembly, and moderate strength, which is widely used in the fields of construction, automobile, shipping, and aerospace manufacturing. Researching… Click to show full abstract

Aluminum alloy (Al6061-T6) is an alloy with strong corrosion resistance, excellent disassembly, and moderate strength, which is widely used in the fields of construction, automobile, shipping, and aerospace manufacturing. Researching on the influence of machining precision and surface quality on the micro-milling process of thin-walled structures of Al6061 is highly significant. Combined with the two simulations (DEFORM-3D simulation and interactive finite element numerical simulation (FEM)) and milling experimental verification, the deformations, errors, and surface quality of milling thin-walled Al6061 were analyzed. The simulations and experimental results show that the deformation of milling a micro thin-walled structure was caused by the vertical stiffness of the thin-walled structure and the cutting force. Surface micromorphology further characterized and showed a poorer quality area, top burr, and concave defects, which directly affect machining quality. It is necessary to improve the surface quality, reduce the surface defects, and increase the stiffness at the top of thin-walled structures in future work.

Keywords: milling process; micro milling; walled structure; thin walled; process thin

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.