LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preliminary Study on the Optimization of Femtosecond Laser Treatment on the Surface Morphology of Lithium Disilicate Glass-Ceramics and Highly Translucent Zirconia Ceramics

Photo from wikipedia

All-ceramic restorations have become increasingly popular in dentistry. Toward ensuring that these restorations adhere to the tooth structure, this study determines the optimal femtosecond laser (FL) treatment parameters for lithium… Click to show full abstract

All-ceramic restorations have become increasingly popular in dentistry. Toward ensuring that these restorations adhere to the tooth structure, this study determines the optimal femtosecond laser (FL) treatment parameters for lithium disilicate glass-ceramics and highly translucent zirconia ceramics with respect to surface morphology. For both the ceramics, the following surface conditions were investigated: (1) as-sintered; (2) Al2O3 sandblasted; (3) FL treatment (dot pattern with line distances of 14, 20, and 40 µm); (4) FL treatment (crossed-line pattern with a line distance of 20 and 40 µm). Surface roughness parameters were estimated using a 3D confocal laser microscope; microstructures were analyzed using a scanning electron microscope. Peak fluence (Fpeak) values of 4 and 8 J/cm2 and irradiation numbers (N) of 20 and 10 shots were selected to create dot patterns in highly translucent zirconia and lithium disilicate glass-ceramics, respectively. Furthermore, Fpeak = 8 J/cm2 and N = 20 shots were chosen to obtain crossed-line patterns in both ceramics. Our results show that lithium disilicate glass-ceramics and highly translucent zirconia exhibit a similar surface morphology under each of the surface treatment conditions. Therefore, FL irradiation of dot or crossed-line patterns (at a distance of 20 and 40 µm) are potential candidates for future investigations.

Keywords: glass ceramics; lithium disilicate; highly translucent; surface; disilicate glass; treatment

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.