LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Electrochemical Characterization of LiNi0.5Co0.2Mn0.3O2 Cathode Material by Solid-Phase Reaction

Photo by johnmarkarnold from unsplash

In this paper, using four carbonates as raw materials, the cathode material LiNi0.5Co0.2Mn0.3O2 was prepared with the “ball milling-calcining” solid-phase synthesis method. The specific reaction process, which consists of the… Click to show full abstract

In this paper, using four carbonates as raw materials, the cathode material LiNi0.5Co0.2Mn0.3O2 was prepared with the “ball milling-calcining” solid-phase synthesis method. The specific reaction process, which consists of the decomposition of the raw materials and the generation of target products, was investigated thoroughly using the TG-DSC technique. XRD, SEM and charge/discharge test methods were utilized to explore the influence of different sintering temperatures on the structure, morphology and electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode. The results show that 900~1000 °C is the appropriate synthesis temperature range. LiNi0.5Co0.2Mn0.3O2 synthesized at 1000 °C delivers optimal cycling stability at 0.5 C. Meanwhile, its initial discharge specific capacity and coulomb efficiency reached 167.2 mAh g−1 and 97.89%, respectively. In addition, the high-rate performance of the cathode sample prepared at 900 °C is particularly noteworthy. Cycling at 0.5 C, 1 C, 1.5 C and 2 C, the corresponding discharge specific capacity of the sample exhibited 148.1 mAh g−1, 143.1 mAh g−1, 140 mAh g−1 and 138.9 mAh g−1, respectively.

Keywords: 2mn0 3o2; cathode material; 5co0 2mn0; mah; lini0 5co0

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.