The effect of 60Si2Mn substrate preheating on the forming quality and mechanical properties of cobalt-based tungsten carbide composite coating was investigated. Substrate preheating was divided into four classes (room temperature,… Click to show full abstract
The effect of 60Si2Mn substrate preheating on the forming quality and mechanical properties of cobalt-based tungsten carbide composite coating was investigated. Substrate preheating was divided into four classes (room temperature, 150 °C, 250 °C, and 350 °C). The morphology, microstructure, and distribution of elements of the coating were analyzed using a two-color laser handheld 3D scanner, a scanning electron microscope (SEM), and an energy dispersive X-ray spectrometer (EDX), respectively. The hardness and wear properties of the cladding layer were characterized through a microhardness tester and a friction wear experiment. The research results show that the substrate preheating temperature is directly proportional to the height of the composite coating. The solidification characteristics of the Stellite 6/WC cladding layer structure are not obviously changed at substrate preheating temperatures of room temperature, 150 °C, and 250 °C. The solidified structure is even more complex at a substrate preheating temperature of 350 °C. At this moment, the microstructure of the cladding layer is mainly various blocky, petaloid, and flower-like precipitates. The hardness and wear properties of the cladding layer are optimal at a substrate preheating temperature of 350 °C in terms of mechanical properties.
               
Click one of the above tabs to view related content.