High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial implants. Appropriate surface roughness plays a critical role in the degradation behavior and the related cellular processes of… Click to show full abstract
High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial implants. Appropriate surface roughness plays a critical role in the degradation behavior and the related cellular processes of biodegradable Mg-based metals. Nevertheless, the most optimized surface roughness has been questionable, especially for Mg-based oral and maxillofacial implants. Three representative scales of surface roughness were investigated in this study, including smooth (Sa < 0.5 µm), moderately rough (Sa between 1.0–2.0 µm), and rough (Sa > 2.0 µm). The results indicated that the degradation rate of the Mg specimen in the cell culture medium was significantly accelerated with increased surface roughness. Furthermore, an extract test revealed that Mg with different roughness did not induce an evident cytotoxic effect. Nonetheless, the smooth Mg surface had an adversely affected cell attachment. Therefore, the high-purity Mg with a moderately rough surface exhibited the most optimized balance between biodegradability and overall cytocompatibility.
               
Click one of the above tabs to view related content.