LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates

Photo from wikipedia

This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly… Click to show full abstract

This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as the main component in artificially manufactured aggregates containing cement and ground granulated blast furnace slag (GGBFS) in different percentages. The produced aggregates were used to produce lightweight concrete (LWC) containing both artificial aggregates only and artificial aggregates mixed with a relatively small percentage of recycled polyethylene terephthalate (PET) in the sand form. Thereby, the possibility of producing concrete with good mechanical properties and enhanced thermal properties was investigated through effective PET reuse with beneficial impacts on the thermal insulation of structures. Based on the obtained results, the samples containing artificial aggregates had lower compressive strength (up to 30%) but better thermal performance (up to 25%) with respect to the reference sample made from natural aggregates. Moreover, substituting 10% of recycled aggregates with PET led to a greater reduction in resistance while improving the thermal conductivity. This type of concrete could improve the economic and environmental aspects by incorporating industrial wastes—mainly fly ash—thereby lowering the use of cement, which would lead to a reduction in CO2 emissions.

Keywords: thermal properties; lightweight concrete; artificial aggregates; concrete; compressive thermal; properties non

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.