LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing Parametric Factors in CIELAB and CIEDE2000 Color-Difference Formulas for 3D-Printed Spherical Objects

Photo from wikipedia

The current color-difference formulas were developed based on 2D samples and there is no standard guidance for the color-difference evaluation of 3D objects. The aim of this study was to… Click to show full abstract

The current color-difference formulas were developed based on 2D samples and there is no standard guidance for the color-difference evaluation of 3D objects. The aim of this study was to test and optimize the CIELAB and CIEDE2000 color-difference formulas by using 42 pairs of 3D-printed spherical samples in Experiment I and 40 sample pairs in Experiment II. Fifteen human observers with normal color vision were invited to attend the visual experiments under simulated D65 illumination and assess the color differences of the 82 pairs of 3D spherical samples using the gray-scale method. The performances of the CIELAB and CIEDE2000 formulas were quantified by the STRESS index and F-test with respect to the collected visual results and three different optimization methods were performed on the original color-difference formulas by using the data from the 42 sample pairs in Experiment I. It was found that the optimum parametric factors for CIELAB were kL = 1.4 and kC = 1.9, whereas for CIEDE2000, kL = 1.5. The visual data of the 40 sample pairs in Experiment II were used to test the performance of the optimized formulas and the STRESS values obtained for CIELAB/CIEDE2000 were 32.8/32.9 for the original formulas and 25.3/25.4 for the optimized formulas. The F-test results indicated that a significant improvement was achieved using the proposed optimization of the parametric factors applied to both color-difference formulas for 3D-printed spherical samples.

Keywords: printed spherical; color difference; color; cielab ciede2000; difference formulas

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.