LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructured Layer of Silver for Detection of Small Biomolecules in Surface-Assisted Laser Desorption Ionization Mass Spectrometry

Photo by henrylim from unsplash

A facile approach for the synthesis of a silver nanostructured layer for application in surface-assisted laser desorption/ionization mass spectrometry of low-molecular-weight biomolecules was developed using electrochemical deposition. The deposition was… Click to show full abstract

A facile approach for the synthesis of a silver nanostructured layer for application in surface-assisted laser desorption/ionization mass spectrometry of low-molecular-weight biomolecules was developed using electrochemical deposition. The deposition was carried out using the following silver salts: trifluoroacetate, acetate and nitrate, varying the voltage and time. The plate based on trifluoroacetate at 10 V for 15 min showed intense SALDI-MS responses for standards of various classes of compounds: fatty acids, cyclitols, saccharides and lipids at a concentration of 1 nmol/spot, with values of the signal-to-noise ratio ≥50. The values of the limit of detection were 0.71 µM for adonitol, 2.08 µM for glucose and 0.39 µM for palmitic acid per spot. SEM analysis of the plate showed anisotropic flower-like microstructures with nanostructures on their surface. The reduced chemical background in the low-mass region can probably be explained by the absence of stabilizers and reducing agents during the synthesis. The plate synthesized with the developed approach showed potential for future use in the analysis of low-molecular-weight compounds of biological relevance. The absence of the need for the utilization of sophisticated equipment and the synthesis time (10 min) may benefit large-scale applications of the layer for the detection of various types of small biomolecules.

Keywords: nanostructured layer; silver; assisted laser; detection; surface assisted; mass

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.