LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight Design of Variable-Stiffness Cylinders with Reduced Imperfection Sensitivity Enabled by Continuous Tow Shearing and Machine Learning

Photo from wikipedia

The present study investigates how to apply continuous tow shearing (CTS) in a manufacturable design parameterization to obtain reduced imperfection sensitivity in lightweight, cylindrical shell designs. The asymptotic nonlinear method… Click to show full abstract

The present study investigates how to apply continuous tow shearing (CTS) in a manufacturable design parameterization to obtain reduced imperfection sensitivity in lightweight, cylindrical shell designs. The asymptotic nonlinear method developed by Koiter is applied to predict the post-buckled stiffness, whose index is constrained to be positive in the optimal design, together with a minimum design load. The performance of three machine learning methods, namely, Support Vector Machine, Kriging, and Random Forest, are compared as drivers to the optimization towards lightweight designs. The new methodology consists of contributions in the areas of problem modeling, the selection of machine learning strategies, and an optimization formulation that results in optimal designs around the compromise frontier between mass and stiffness. The proposed ML-based framework proved to be able to solve the inverse problem for which a target design load is given as input, returning as output lightweight designs with reduced imperfection sensitivity. The results obtained are compatible with the existing literature where hoop-oriented reinforcements were added to obtain reduced imperfection sensitivity in composite cylinders.

Keywords: machine; design; reduced imperfection; imperfection sensitivity

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.