LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of Shear Surface Morphology of Jointed Rock Masses Based on Gaussian Filtering Method under Freeze-Thaw Cycles

Photo by akshayspaceship from unsplash

This study aims to quantify the shear surface morphology of jointed rock and its evolution under shearing, cyclic freezing, and thawing using the Gaussian filtering method. Gaussian filtering method enables… Click to show full abstract

This study aims to quantify the shear surface morphology of jointed rock and its evolution under shearing, cyclic freezing, and thawing using the Gaussian filtering method. Gaussian filtering method enables the construction of the (large-scale) waviness surface and the (small-scale) unevenness surface of a digitized surface (created by laser scanning). Both waviness and unevenness surfaces are then quantified by roughness coefficient ratio (S) and degradation degrees of the waviness surface (Dw) and unevenness surface (Dr). These (microscopic) morphological parameters (S, Dw and Dr) are subsequently used to explain the development of the (macroscopic) shear strength of the jointed rocks on direct shear tests. The results indicate that compared with fresh jointed rocks, the freezing and thawing causes the potential shear surface asperities to be easier to damage and fail under shear load. Such damage is well represented by the significant decrease in Dw and Dr. On the other hand, with the increase of the freeze-thaw cycle (N), Dw increases while Dr reaches the maximum at an early stage of the cycle, where Dr > Dw. This difference reveals the underlying shear mechanism microscopically; that is, in the initial stage, the shear surface morphology is mainly dominated by the unevenness surface Dr, and then it is controlled by the waviness surface Dw during the freeze-thaw cycle.

Keywords: shear surface; filtering method; freeze thaw; gaussian filtering; surface; surface morphology

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.