LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Study on the Design Depth of Permeable Road Pavement through Dynamic Load Experiment

Photo from wikipedia

This study investigated vertical strain and stress through a dynamic load experiment at the testing area of Ke-Da Road, Pingtung, Taiwan. A thirty-five-ton truck was moved at constant speeds of… Click to show full abstract

This study investigated vertical strain and stress through a dynamic load experiment at the testing area of Ke-Da Road, Pingtung, Taiwan. A thirty-five-ton truck was moved at constant speeds of 40, 60, and 80 km/h to simulate heavy load conditions to study the mechanical variations. From the results, it was found that the strain and stress curves of the permeable road pavement showed asymmetry due to the viscoelastic property of the open-grade friction course. The results showed that vertical strains and vertical stresses of permeable road pavement were greatly affected by the axle configuration and the change in traffic speed. Furthermore, to propose the design thickness of a permeable road pavement, the pavement strain and stress were modelled with respect to depth using regression based on these collected data. According to the stress regression models and considering the construction uncertainty, the recommend design depth of a permeable pavement is 30 cm. The findings of this study would be helpful in determining the permeable road pavement depth when subjected to heavy traffic load, and the material combination of open-graded friction concrete, porous asphalt concrete, and permeable cement concrete was proposed in this study during the design period.

Keywords: road; pavement; depth; design; road pavement; permeable road

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.