In this study, ethacridine lactate removal from aqueous solution using a biosorbent material based on residual microbial biomass and natural polymers in fixed-bed continuous column was investigated. Composite beads of… Click to show full abstract
In this study, ethacridine lactate removal from aqueous solution using a biosorbent material based on residual microbial biomass and natural polymers in fixed-bed continuous column was investigated. Composite beads of Saccharomyces pastorianus residual biomass and calcium alginate were obtained by immobilization technique. The prepared biosorbent was characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy, and analysis of point of zero charge value. Then, laboratory-scale experiments by fixed-bed column biosorption were conducted in continuous system. To this purpose, the column bed high (5 cm; 7.5 cm), initial pollutant concentration (20 mg/L; 40 mg/L), and solution flow through the column (0.6 mL/min; 1.5 mL/min) were considered the main parameters. Recorded breakthrough curves suggest that lower flow rates, greater bed heights, and a lower concentration of ethacridine lactate led to an increased biosorption of the target compound. The biosorption dynamic was investigated by nonlinear regression analysis using the Adams–Bohart, Yoon–Nelson, Clark, and Yan mathematical models. Conclusively, our research highlights, firstly, that the obtained biosorbent material has the required properties for retaining the ethacridine lactate from aqueous solution in continuous system. Secondly, it emphasizes that the modeling approach reveals an acceptable fitting with the experimental data for the Yoon–Nelson, Clark, and Yan models.
               
Click one of the above tabs to view related content.