LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers

Photo from wikipedia

Light-weight metal matrix composites, especially magnesium-based composites, have recently become more widespread for high-efficiency applications, including aerospace, automobile, defense, and telecommunication industries. The squeeze cast AZ91 base material (AZ91-BM) and… Click to show full abstract

Light-weight metal matrix composites, especially magnesium-based composites, have recently become more widespread for high-efficiency applications, including aerospace, automobile, defense, and telecommunication industries. The squeeze cast AZ91 base material (AZ91-BM) and its composites having 23 vol.% short carbon fibers were fabricated and investigated. The composite specimens were machined normal to the reinforced plane (Composite-N) and parallel to the reinforced plane (Composite-P). All the as-casted materials were subjected to different tests, such as hardness, compression, and wear testing, evaluating the mechanical properties. Dry wear tests were performed using a pin-on-disk machine at room temperature under different applied wear loads (1–5 N) and different sliding distances (0.4461×104–3.12×104 m). The microstructures and worn surfaces of the fabricated AZ91-BM and the two composite specimens were investigated using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) advanced analysis system. The wear debris was collected and investigated also under the SEM. The results showed significant improvement in hardness, compressive strength, and wear resistance of the composite specimens (Composite-N and Composite-P) over the AZ91-BM. The compressive strength and wear resistance are more fibers orientation sensitive than the hardness results. When the fiber orientation is parallel to the sliding direction (Composite-N), the weight loss is somewhat lower than that of the fiber orientation perpendicular to the sliding direction (Composite-P) at a constant wear load of 2 N and the sliding distances of 0.4461×104, 1.34×104 , and 2.23×104 m. In contrast, the weight loss of Composite-P is lower than Composite-N, especially at the highest sliding distance of 3.12×104 m due to the continuous feeding of graphite lubricant film and the higher compressive strength. Plastic deformation, oxidation, and abrasive wear are the dominant wear mechanisms of AZ91-BM; in contrast, abrasive and delamination wear are mainly the wear mechanisms of the two composites under the applied testing conditions.

Keywords: wear; 104 104; short carbon; carbon fibers; composite specimens

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.