LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Electromagnetic Characterization Methods for New Materials and Structures in Aerospace Platforms

Photo from wikipedia

The tendency over the last decades in the aerospace industry is to substitute classic metallic materials with new composite materials such as carbon fiber composites (CFC), fiber glass, etc., as… Click to show full abstract

The tendency over the last decades in the aerospace industry is to substitute classic metallic materials with new composite materials such as carbon fiber composites (CFC), fiber glass, etc., as well as adding electronic devices to ensure the safety and proper platform operation. Due to this, to protect the aircraft against the Electromagnetic Environmental Effects (E3), it is mandatory to develop accurate electromagnetic (EM) characterization measurement systems to analyze the behavior of new materials and electronic components. In this article, several measurement methods are described to assess the EM behavior of the samples under test: microstrip transmission line for a surface current analysis, free space to obtain intrinsic features of the materials and shielding effectiveness (SE) approaches to figure out how well they isolate from EM fields. The results presented in this work show how the different facilities from the National Institute of Aerospace Technology (INTA) are suitable for such purposes, being capable of measuring a wide variety of materials, depending on the type of test to be carried out.

Keywords: new materials; methods new; novel electromagnetic; electromagnetic characterization; characterization methods

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.