LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of Moisture Damage Potential in Hot Mix Asphalt Using Polymeric Aggregate Treatment

Photo by nichtraucherinitiative from unsplash

To enhance the moisture damage performance of hot mix asphalt (HMA), treating the aggregate surface with a suitable additive was a more convenient approach. In this research, two types of… Click to show full abstract

To enhance the moisture damage performance of hot mix asphalt (HMA), treating the aggregate surface with a suitable additive was a more convenient approach. In this research, two types of aggregate modifiers were used to study the effect of moisture damage on HMA. Three different aggregate sources were selected based on their abundance of use in HMA. To study the impact of these aggregate modifiers on moisture susceptibility of HMA, the indirect tensile strength test and indirect tensile modulus test were used as the performance tests. Moisture conditioning of specimens was carried out to simulate the effect of moisture on HMA. The prepared samples’ tensile strength ratio (TSR) and stiffness modulus (Sm) results indicated a decrease in the strength of the HMA after moisture conditioning. After treating the aggregate surface with additives, an improvement was seen in dry and wet strength and stiffness. Moreover, an increasing trend was observed for both additives. The correlation between TSR and strength loss reveals a strong correlation (R2 = 0.7219). Also, the two additives indicate increased wettability of asphalt binder over aggregate, thus improving the adhesion between aggregate and asphalt binder.

Keywords: moisture damage; moisture; aggregate; asphalt; hma

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.