LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Semi Empirical Regression Model for Critical Dent Depth of Externally Corroded X65 Gas Pipeline

Photo from wikipedia

External corrosion dent is a common type of compound dent. On the one hand, this type of compound dent reduces the bearing area and bearing capacity of the pipeline. On… Click to show full abstract

External corrosion dent is a common type of compound dent. On the one hand, this type of compound dent reduces the bearing area and bearing capacity of the pipeline. On the other hand, it leads to an increase in the stress–strain concentration in the dent and reduces the anti-fatigue load capacity of the pipeline, which is more harmful to the service safety of the pipeline than the simple dent. In this study, the reliability of the modeling method was verified by the numerical inversion of the full-size dented pipe test. A three-dimensional finite element model for a pipe with a small corrosion dent was established by analyzing the internal detection data on corrosion defects of pipes with a diameter of 813 mm. The failure criterion of the corrosion dent pipe and the calculation method of the critical dent depth were determined. The influence of corrosion depth, length, width, internal pressure load, curvature radius of indenter, and diameter–thickness pipeline ratio on critical dent depth was investigated. Finally, a critical dent-depth prediction formula was developed based on the numerical results. This study provides a reference and significant guidance for the applicability evaluation of corroded sunken pipelines.

Keywords: dent depth; critical dent; pipeline; corrosion; dent

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.