LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Hydrogen Reduction on the Properties of Porous High-Nitrogen Austenitic Stainless Steel

Photo by sergeykoznov from unsplash

This work explores the impact of hydrogen reduction on sintering and nitriding of porous high-nitrogen austenitic stainless steel (HNASS) processed via powder metallurgy. A temperature-resolved hydrogen reduction (temperature range of… Click to show full abstract

This work explores the impact of hydrogen reduction on sintering and nitriding of porous high-nitrogen austenitic stainless steel (HNASS) processed via powder metallurgy. A temperature-resolved hydrogen reduction (temperature range of 700–1250 °C) was performed to evaluate the phase composition of porous HNASS. The systematic microstructure was characterized by a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The compressive mechanical properties and electrochemical corrosion behavior of the unreduced and reduced samples were discussed. Samples reduced in hydrogen at 1100 °C and 1250 °C show better compressive properties while still retaining good corrosion resistance. Reduction of oxide facilitates sintering thus improves the compressive properties. Increasing the content of solute nitrogen and reducing the precipitation of nitride can effectively improve the corrosion resistance of porous HNASS.

Keywords: spectroscopy; reduction; hydrogen reduction; high nitrogen; porous high

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.