LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Fibre Content in Edible Flours Using Microwave Dielectric Cell: Concise Review and Experimental Insights

Photo from wikipedia

The quality of edible intake decides the health of the human body and is also responsible for building a healthy immune system in the body. A healthy immune system can… Click to show full abstract

The quality of edible intake decides the health of the human body and is also responsible for building a healthy immune system in the body. A healthy immune system can protect the body even from invisible attacks of viral or bacterial infections. The assessment of the quality of edible items is not well defined and standardized in many developing countries due to quality assessment difficulties in practice. An alternative well-defined quality assessment approach for edible flours is presented in this paper. Every edible substance has dielectric properties, and it varies from material to material in nature. Edible flours and liquid have different microwave absorption capabilities, based on their natural molecular structure. Based on the microwave energy absorption characteristics of materials, the attenuation constant of edible flours is derived by the waveguide method in this work. In this approach, microwave energy absorption of the edible samples of different types of wheat, rice and millets are observed, and the attenuation constant factors of the samples are then calculated from the tabulated values. The work focuses on the identification of fibre content present in the edible flours. Inferences are made based on the attenuation and its variations with the number of samples, dielectric loss and dielectric constant of the samples. A systematic and concise review of the topic is also included for the benefit of future researchers.

Keywords: concise review; identification fibre; edible flours; quality; fibre content

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.