LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two Magnetic Orderings and a Spin–Flop Transition in Mixed Valence Compound Mn3O(SeO3)3

Photo by tabithaturnervisuals from unsplash

A mixed-valence manganese selenite, Mn3O(SeO3)3, was successfully synthesized using a conventional hydrothermal method. The three-dimensional framework of this compound is composed of an MnO6 octahedra and an SeO3 trigonal pyramid.… Click to show full abstract

A mixed-valence manganese selenite, Mn3O(SeO3)3, was successfully synthesized using a conventional hydrothermal method. The three-dimensional framework of this compound is composed of an MnO6 octahedra and an SeO3 trigonal pyramid. The magnetic topological arrangement of manganese ions shows a three-dimensional framework formed by the intersection of octa-kagomé spin sublattices and staircase-kagomé spin sublattices. Susceptibility, magnetization and heat capacity measurements confirm that Mn3O(SeO3)3 exhibits two successive long-range antiferromagnetic orderings with TN1~4.5 K and TN2~45 K and a field-induced spin–flop transition at a critical field of 4.5 T at low temperature.

Keywords: compound; mn3o seo3; spin flop; mixed valence; flop transition

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.