LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Indenter Nose Shape and Layer Configuration on the Quasi-Static Perforation Behaviour of Metal–Plastic Laminates

Photo from wikipedia

This study investigated the perforation resistance behaviour of metal–plastic laminates (MPLs) when they are indented by different nose shapes. Aluminium (Al) and HDPE (high-density polyethylene) layers were bonded with a… Click to show full abstract

This study investigated the perforation resistance behaviour of metal–plastic laminates (MPLs) when they are indented by different nose shapes. Aluminium (Al) and HDPE (high-density polyethylene) layers were bonded with a suitable adhesive in an alternative manner to prepare bilayer and trilayer MPL configurations. Quasi-static perforation experiments were performed with hemispherical, conical and blunt indenters. The effects of nose shape, layer configuration and adhesive on the force–deformation profile, perforation resistance capacity and failure mechanisms were evaluated. The results indicate that for a monolithic layer, the blunt indenter showed the highest perforation energy capacity. The conical and blunt indenters facing Al backed by HDPE gave higher perforation energy. The hemispherical indenter facing HDPE backed by Al was found to be more effective in perforation resistance. Trilayer Al–HDPE–Al showed higher perforation resistance than HDPE–Al–HDPE. Circumferential cracking, radial symmetric cracking and shear plugging were the main failure modes for Al under hemispherical, conical and blunt indenters, respectively. The adhesive contributed to an increase in the perforation energy and peak force to failure in laminates. The adhesive was shown to detach from the Al surface after Al fracturing through crack propagation, and this effect was more pronounced when the indenter faced HDPE at the front of the laminate.

Keywords: perforation resistance; perforation; metal plastic; layer; indenter; behaviour metal

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.