LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BTO-Coupled CIGS Solar Cells with High Performances

In order to improve the power conversion efficiency (PCE) of Cu(In,Ga)Se2 (CIGS) solar cells, a BaTiO3 (BTO) layer was inserted into the Cu(In,Ga)Se2. The performances of the BTO-coupled CIGS solar… Click to show full abstract

In order to improve the power conversion efficiency (PCE) of Cu(In,Ga)Se2 (CIGS) solar cells, a BaTiO3 (BTO) layer was inserted into the Cu(In,Ga)Se2. The performances of the BTO-coupled CIGS solar cells with structures of Mo/CIGS/CdS/i-ZnO/AZO, Mo/BTO/CIGS/CdS/i-ZnO/AZO, Mo/CIGS/BTO/CdS/i-ZnO/AZO, Mo/CIGS/CdS/BTO/i-ZnO/AZO, Mo/CIGS/BTO/i-ZnO/AZO, Mo/CIGS/CdS/BTO/AZO, and Mo/ CIGS/CdS(5 nm)/BTO(5 nm)/i-ZnO/AZO were systematically studied via the SCAPS-1D software. It was found that the power conversion efficiency (PCE) of a BTO-coupled CIGS solar cell with a device configuration of Mo/CIGS/CdS/BTO/AZO was 24.53%, and its open-circuit voltage was 931.70 mV. The working mechanism for the BTO-coupled CIGS solar cells with different device structures was proposed. Our results provide a novel strategy for improving the PCE of solar cells by combining a ferroelectric material into the p-n junction materials.

Keywords: cigs solar; bto coupled; solar cells; cigs cds; zno azo; coupled cigs

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.