LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of 2D and 3D Plasma Electrolytic Oxidation (PEO)-Based Coating Porosity Data Obtained by X-ray Tomography Rendering and a Classical Metallographic Approach

Photo from wikipedia

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques—namely, SEM and computer microtomography. Two approaches for porosity… Click to show full abstract

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques—namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.

Keywords: plasma electrolytic; oxidation peo; electrolytic oxidation; peo; peo based; porosity

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.