LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piezoelectric Properties of 0-3 Composite Films Based on Novel Molecular Piezoelectric Material (ATHP)2PbBr4

Photo by johnmarkarnold from unsplash

Since their discovery, ferroelectric materials have shown excellent dielectric responses, pyroelectricity, piezoelectricity, electro-optical effects, nonlinear optical effects, etc. They are a class of functional materials with broad application prospects. Traditional… Click to show full abstract

Since their discovery, ferroelectric materials have shown excellent dielectric responses, pyroelectricity, piezoelectricity, electro-optical effects, nonlinear optical effects, etc. They are a class of functional materials with broad application prospects. Traditional pure inorganic piezoelectric materials have better piezoelectricity but higher rigidity; pure organic piezoelectric materials have better flexibility but havetoo small a piezoelectric coefficient. The material composite, on the other hand, can combine the advantages of both, so that it has both flexibility and a high piezoelectric coefficient. In this paper, a new molecular piezoelectric material (C5H11NO)2PbBr4 with a high Curie temperature Tc and a large piezoelectric voltage constant g33, referred to as (ATHP)2PbBr4, was used to prepare a 0-3 type piezoelectric composite film by compounding with an organic polymer material polyvinylidene fluoride (PVDF), and its ferroelectricity was investigated. The results show that the 0-3 type (ATHP)2PbBr4 piezoelectric composite film has good ferroelectricity and piezoelectricity, and the calculated piezoelectric voltage constant g33 after polarization is about 358.6 × 10−3 Vm/N, which is higher than that of PVDF material, and is important for the fabrication of high-performance piezoelectric sensors.

Keywords: 2pbbr4 piezoelectric; material; molecular piezoelectric; piezoelectric material; athp 2pbbr4

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.