LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Properties of Alkali-Activated Slag Fiber Composites Varying with Fiber Volume Fractions

Photo by terri_bleeker from unsplash

The mechanical properties of alkali-activated slag fiber composites (ASFC) were investigated with varying volume fractions of PVA (Polyvinyl alcohol) fibers. Ground granulated blast furnace slag (GGBS) and alkali-activators were used… Click to show full abstract

The mechanical properties of alkali-activated slag fiber composites (ASFC) were investigated with varying volume fractions of PVA (Polyvinyl alcohol) fibers. Ground granulated blast furnace slag (GGBS) and alkali-activators were used as the main binders instead of cement, which emits a large amount of carbon dioxide during the manufacturing process. The measured slump flow of ASFC showed a high fluidity at a fiber content of 1.5 vol.% or less. The tensile, flexural, and shear strength of ASFC showed higher values as the amount of fiber increased. Compared to the existing high ductility fiber composites showing strain hardening behaviors with a fiber content of 2.0 vol.%, ASFC proved that it could exhibit high ductility characteristics due to multi-microcracks even at low fiber mixing rates of 1.0% and 1.25%. ASFC could be expected to lower the manufacturing cost with a low fiber content and provide improved workability with high fluidity. In addition, when manufacturing structural components using the developed ASFC, it is expected that the amount of fiber could be selected and used according to the required performance.

Keywords: fiber; fiber composites; alkali activated; mechanical properties; slag; properties alkali

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.