In this work, the magnetic Zr-based MOF composites with excellent retrievability were prepared using Fe3O4@SiO2 as the core and UiO–66–NH2 as the shell. Fe3O4@SiO2 core could introduce mesopores and result… Click to show full abstract
In this work, the magnetic Zr-based MOF composites with excellent retrievability were prepared using Fe3O4@SiO2 as the core and UiO–66–NH2 as the shell. Fe3O4@SiO2 core could introduce mesopores and result in capillary condensation in MOF composites, which aggravated with the dosage of Fe3O4@SiO2. The as-synthesized MOF composites could be rapidly retrieved from aqueous solution via magnetic separation in 10 seconds. pH imposed an important effect on Au (III) adsorption by governing the ion exchange and electrostatic interaction between Au (III) anions and adsorbents, and the optimal adsorption happened at pH 7. The adsorption process fitted well with the pseudo-second order kinetics model and Langmuir adsorption model. The maximum adsorption capacity of Au (III) by FSUN–10 and FSUN–50 at 298 K were determined to be 611.18 mg∙g−1 and 463.85 mg∙g−1, respectively. Additionally, Au (III) uptakes increased with temperature. Beyond experiments, the adsorption mechanisms were thoroughly studied through systematic characterization, molecular dynamics simulation (MDS) and density functional theory (DFT) study. It was verified that Au (III) was adsorbed via coordination to hydroxyl and amino groups and was reduced to Au (I) and Au (0) by amino groups. The diffusion coefficient of Au (III) along UiO–66–NH2 was calculated to be 5.8 × 10−5 cm2∙s−1. Moreover, the magnetic Zr-based MOF composites exhibit great industrial value in gold recycling with high adsorption selectivity and good recyclability.
               
Click one of the above tabs to view related content.