LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Re-Recycling on Rheology and Microstructure of Asphalt Binder

Photo from wikipedia

Currently, aged recycled asphalt pavements have re-recycling demands, but the evolution mechanism of re-recycled asphalt binder properties is still unclear. Therefore, this study analyzes the rheological properties and microstructure of… Click to show full abstract

Currently, aged recycled asphalt pavements have re-recycling demands, but the evolution mechanism of re-recycled asphalt binder properties is still unclear. Therefore, this study analyzes the rheological properties and microstructure of re-recycled asphalt by dynamic shear rheometer (DSR), bending beams rheometer (BBR), atomic force microscope (AFM), and Fourier transform infrared spectroscopy (FTIR). The macro performance results show that re-recycling improves high-temperature performance and reduces fatigue and low-temperature performance. In addition, the aged re-recycled asphalt’s ΔTc ≤ −2.5 °C, has a risk of low-temperature cracking. The micro results show that the adhesion between asphalt and aggregate decreases as the recycling times increase; the re-recycled asphalt mixture has a greater adhesion cracking risk. Some macro–micro experimental results are correlated. Aging accelerates the decay of rheological properties of re-recycled asphalt by increasing the microscopic roughness and carbonyl index of re-recycled asphalt. It indicates that re-recycling reduces the aging resistance of asphalt. Furthermore, the properties of recycled asphalt are strongly correlated with aging functional groups, roughness, and surface energy; the microstructural changes significantly influence the rheology properties of asphalt.

Keywords: asphalt binder; rheology; recycled asphalt; effect recycling

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.