LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Electrical Contacts Study for Tetrahedrite-Based Thermoelectric Generators

Photo from wikipedia

High electrical and thermal contact resistances can ruin a thermoelectric device’s performance, and thus, the use of effective diffusion barriers and optimization of joining methods are crucial to implement them.… Click to show full abstract

High electrical and thermal contact resistances can ruin a thermoelectric device’s performance, and thus, the use of effective diffusion barriers and optimization of joining methods are crucial to implement them. In this work, the use of carbon as a Cu11Mn1Sb4S13 tetrahedrite diffusion barrier, and the effectiveness of different fixation techniques for the preparation of tetrahedrite/copper electrical contacts were investigated. Contacts were prepared using as jointing materials Ni and Ag conductive paints and resins, and a Zn-5wt% Al solder. Manual, cold- and hot-pressing fixation techniques were explored. The contact resistance was measured using a custom-made system based on the three points pulsed-current method. The legs interfaces (Cu/graphite/tetrahedrite) were investigated by optical and scanning electron microscopies, complemented with energy-dispersive X-ray spectroscopy, and X-ray diffraction. No interfacial phases were formed between the graphite and the tetrahedrite or Cu, pointing to graphite as a good diffusion barrier. Ag water-based paint was the best jointing material, but the use of hot pressing without jointing materials proves to be the most reliable technique, presenting the lowest contact resistance values. Computer simulations using the COMSOL software were performed to complement this study, indicating that high contact resistances strongly reduce the power output of thermoelectric devices.

Keywords: study tetrahedrite; contacts study; based thermoelectric; thermoelectric generators; electrical contacts; tetrahedrite based

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.