LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ho-SiAlON Ceramics as Green Phosphors under Ultra-Violet Excitations

Photo from wikipedia

In most inorganic phosphors, increasing the concentration of activators inevitably causes the concentration quenching effect, resulting in reduced emission intensity at a high level of activator doping and the conventional… Click to show full abstract

In most inorganic phosphors, increasing the concentration of activators inevitably causes the concentration quenching effect, resulting in reduced emission intensity at a high level of activator doping and the conventional practice is to limit the activator concentration to avoid the quenching. In contrast, SiAlON ceramics preserve their chemical composition over a very wide range of doping of activator ions, which favors the adjustment and optimization of the luminescence properties avoiding concentration quenching. Here, we investigate the photoluminescence properties of Ho-doped SiAlON (Ho-SiAlON) ceramics phosphors prepared by the hot-press method. Ho-SiAlON ceramics show strong green visible (554 nm) as well as infrared (2046 nm) broadband downshifting emissions under 348 nm excitation. It is shown that there is no concentration quenching, even at a very high level of Ho doping. The emission intensity of the 554 nm band increased two-fold when the Ho concentration is doubled. The results show that the Ho-SiAlON ceramics can be useful for efficient green phosphors.

Keywords: ceramics green; concentration quenching; green phosphors; concentration; sialon ceramics

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.