LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO

Photo from wikipedia

Ag-Zn alloys are identified as highly active and selective electrocatalysts for CO2 reduction reaction (CO2RR), while how the phase composition of the alloy affects the catalytic performances has not been… Click to show full abstract

Ag-Zn alloys are identified as highly active and selective electrocatalysts for CO2 reduction reaction (CO2RR), while how the phase composition of the alloy affects the catalytic performances has not been systematically studied yet. In this study, we fabricated a series of Ag-Zn alloy catalysts by magnetron co-sputtering and further explored their activity and selectivity towards CO2 electroreduction in an aqueous KHCO3 electrolyte. The different Ag-Zn alloys involve one or more phases of Ag, AgZn, Ag5Zn8, AgZn3, and Zn. For all the catalysts, CO is the main product, likely due to the weak CO binding energy on the catalyst surface. The Ag5Zn8 and AgZn3 catalysts show a higher CO selectivity than that of pure Zn due to the synergistic effect of Ag and Zn, while the pure Ag catalyst exhibits the highest CO selectivity. Zn alloying improves the catalytic activity and reaction kinetics of CO2RR, and the AgZn3 catalyst shows the highest apparent electrocatalytic activity. This work found that the activity and selectivity of CO2RR are highly dependent on the element concentrations and phase compositions, which is inspiring to explore Ag-Zn alloy catalysts with promising CO2RR properties.

Keywords: throughput preparation; high throughput; activity; reduction; selectivity; alloy

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.