LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of PZN-PMN-PZT Piezoelectric Ceramics with High d33 and Qm Values

To achieve good long-term temperature stability in devices used in energy-conversion applications, this study is aimed at developing combined ceramics, referred to as PZN-PMN-PZT, comprising Pb(Zn1/3Nb2/3)O3 (PZN) and Pb(Mn1/3Nb2/3)O3 (PMN),… Click to show full abstract

To achieve good long-term temperature stability in devices used in energy-conversion applications, this study is aimed at developing combined ceramics, referred to as PZN-PMN-PZT, comprising Pb(Zn1/3Nb2/3)O3 (PZN) and Pb(Mn1/3Nb2/3)O3 (PMN), which are typical relaxor ferroelectric materials, and Pb(Zr,Ti)O3 (PZT). The piezoelectric properties were compared based on several parameters according to the change in the composition ratio between relaxor materials, amounts of Sb2O3 dopant, and Zr/Ti ratio in the PZT system. Finally, we established optimal poling conditions to improve the electrical properties of the optimized piezoelectric material, based on the evaluation of ceramic properties according to the applied voltage during the poling process. The optimized composition of the investigated piezoelectric ceramics is represented by 0.14PZN-0.06PMN-0.80PbZr0.49Ti0.51 + 0.3 wt.% CuO + 0.3 wt.% Fe2O3 with 0.1 wt.% Sb2O3 doping, which yielded the superior properties (d33 = 361 pC/N, Qm = 1234, Tc = 306 °C).

Keywords: pmn pzt; pzt piezoelectric; pzt; pzn pmn; pmn; piezoelectric ceramics

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.