LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing Efficient Flash-Calcined Sediment-Based Ecobinders

To ensure the optimum navigation of boats and protection against flooding, waterways and ports are regularly dredged. The volume of dredged materials represents 56 million m3 in France and 300… Click to show full abstract

To ensure the optimum navigation of boats and protection against flooding, waterways and ports are regularly dredged. The volume of dredged materials represents 56 million m3 in France and 300 million m3 in Europe. These materials show a high potential for a use as supplementary cementitious material (SCM). In this paper, sediments treated by the flash calcination method (STFC), which is based on a low-energy consumption process, are utilized as a mineral admixture in a cementitious matrix. The results of the physical, chemical, and mineralogical characterization prove that this heat treatment has an interesting impact on the final properties of the sediments. Mortars based on the flash-calcined product have comparable mechanical properties to control mortar. For a substitution rate below 10%, the performances are even equivalent to a metakaolin (MK80)-based mortar. Calorimetry testing demonstrated that calcined materials also improve hydration processes in the cement matrixes by generating additional heat release due to sediment pozzolanic activity. Across this study, it is shown that waste material including sediment can be transformed after optimized heat treatment into a valuable resource for the building and infrastructure sector.

Keywords: calcined sediment; efficient flash; designing efficient; sediment; flash calcined

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.