LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement

Photo by terri_bleeker from unsplash

Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of… Click to show full abstract

Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the production of thermoplastic sandwich structures. Therefore, simple deposition experiments of thermoplastic PEEK/CF prepreg tapes on a PEI closed-cell foam were carried out. 3D surface profile measurements and peel tests according to DIN EN 28510-1 standard were used to investigate the joining area and bonding quality. The results show that a cohesive bond is formed between the deposited tapes and the foam core, however the foam structure in the area of the deposited tapes deforms in dependence of the process parameters, and increasingly with higher deposition temperatures. Due to the deformations that occur during tape deposition, the thermomechanical foam behavior under the TAFP process conditions was investigated in more detail in a subsequent study for an extensive parameter space using a simple experimental setup. Results show that for suitable process parameters, namely a short contact time and a high temperature, the foam deformation can be minimized with the simultaneous formation of a thin melting layer required for cohesive bonding. The inner foam core structure remains unaffected.

Keywords: based thermoplastic; fiber; thermoplastic automated; laser based; foam core; foam

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.