LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant

Photo by miguelherc96 from unsplash

The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li.… Click to show full abstract

The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants’ development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3–29.5) than in spring waters (13.0–42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially.

Keywords: natans free; accumulation salvinia; free floating; salvinia natans; salvinia; lithium accumulation

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.