LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening

Photo by dariusbashar from unsplash

With excellent creep resistance, high-temperature thermal strength and high-temperature fatigue strength, Inconel 625 is widely applied to fabricate structural components in the aerospace field, where fatigue life is a key… Click to show full abstract

With excellent creep resistance, high-temperature thermal strength and high-temperature fatigue strength, Inconel 625 is widely applied to fabricate structural components in the aerospace field, where fatigue life is a key point. Laser shock peening (LSP) is considered to improve the fatigue strength and fatigue crack growth resistance of metal materials. The present work was conducted to investigate the influence of LSP on strain-controlled fatigue behavior of Inconel 625. The surface microstructures of specimens before and after LSP were observed by transmission electron microscope (TEM). The strain-controlled fatigue loading tests with different strain amplitudes ranging from 0.4% to 1.2% were carried out on the specimens, and the topography of fracture appearance was examined by scanning electron microscope (SEM). The investigations showed that the specimens with LSP presented fewer crack initiations, shorter fatigue striations space and smaller dimples or micropores, which account for the enhancement of the fatigue life for the LSP specimens. Furthermore, the plastic deformation, ultra-fine grains, twins and dislocations caused by LSP could prevent crack initiation, crack propagation and ultimate fracture, hence prolonging the fatigue life of the Inconel 625. In addition, it was revealed that the cyclic strain hardening as well as cyclic strain softening remains almost the same to Inconel 625 with or without LSP.

Keywords: laser shock; shock peening; behavior inconel; inconel 625; strain; fatigue behavior

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.