LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic-Property Assessment on Dy–Nd–Fe–B Permanent Magnet by Thermodynamic Calculation and Micromagnetic Simulation

Photo by etienne_beauregard from unsplash

Heavy rare-earth (HRE) elements are important for the preparation of high-coercivity permanent magnets. A further understanding of the thermodynamic properties of HRE phases, and the magnetization reversal mechanism of magnets… Click to show full abstract

Heavy rare-earth (HRE) elements are important for the preparation of high-coercivity permanent magnets. A further understanding of the thermodynamic properties of HRE phases, and the magnetization reversal mechanism of magnets are still critical issues to obtain magnets that can achieve better performance. In this work, the Nd–Dy–Fe–B multicomponent system is investigated via the calculation of the phase diagram (CALPHAD) method and micromagnetic simulation. The phase composition of magnets with various ratios of Nd and Dy is assessed using critically optimized thermodynamic data. γ-Fe and Nd2Fe17 phases are suppressed when partial Nd is substituted with Dy (<9.3%), which, in turn, renders the formation of Nd2Fe14B phase favorable. The influence of the magnetic properties of grain boundaries (GBs) on magnetization reversal is detected by the micromagnetic simulations with the 3D polyhedral grains model. Coercivity was enhanced with both 3 nm nonmagnetic and the hard-magnetic GBs for the pinning effect besides the GBs. Moreover, the nucleation and propagation of reversed domains in core-shell grains are investigated, which suggests that the magnetic structure of grains can also influence the magnetization reversal of magnets. This study provides a theoretical route for a high-efficiency application of the Dy element, realizing a deterministic enhancement of the coercivity in Nd–Fe–B-based magnets.

Keywords: micromagnetic simulation; magnetic property; property assessment; magnetization reversal; calculation

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.