The microstructures and local properties of ordinary refractory ceramic materials are heterogeneous and play a role in the fracture behavior of ordinary refractory ceramic materials. It is important to consider… Click to show full abstract
The microstructures and local properties of ordinary refractory ceramic materials are heterogeneous and play a role in the fracture behavior of ordinary refractory ceramic materials. It is important to consider them in numerical modeling. Herein, the discrete element (DE) method was applied to determine the influences of heterogeneity of ordinary refractory ceramic materials by applying statistically distributed interface properties (uniform, Weibull), as opposed to constant interface properties, among the elements. Uniaxial cold crushing tests were performed as a case study. A reasonable loading strain rate for receiving quasi-static loading conditions and computation efficiency was evaluated. The loading wall displacement was recorded to present the stress–strain curves of cold crushing tests. Furthermore, the effects of the interface property distributions on the load/displacement curve, fracture energy, cold crushing strength, and fracture events were investigated. The results reveal that the DE method is a promising method for visualizing and quantifying the post–peak fracture process and crack events in ordinary refractory ceramics. Different interface property distributions contribute to significant variances in the load/displacement curve shape and fracture pattern. The heterogeneity of ordinary refractory ceramics can be further determined by comparing the experimental curves and fracture propagation along with an inverse identification approach.
               
Click one of the above tabs to view related content.