LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Properties and Flammability Characteristics of a Series of DGEBA-Based Thermosets Loaded with a Novel Bisphenol Containing DOPO and Phenylphosphonate Units

Photo from wikipedia

Despite a recent sustained preoccupation for developing biobased epoxies with enhanced applicability, such products have not been widely accepted for industry because of their inferior characteristics compared to classic petroleum-based… Click to show full abstract

Despite a recent sustained preoccupation for developing biobased epoxies with enhanced applicability, such products have not been widely accepted for industry because of their inferior characteristics compared to classic petroleum-based epoxy thermosets. Therefore, significant effort is being made to improve the flame retardance of the most commonly used epoxies, such as diglycidyl ether-based bisphenol A (DGEBA), bisphenol F (DGEBF), novalac epoxy, and others, while continuously avoiding the use of hazardous halogen-containing flame retardants. Herein, a phosphorus-containing bisphenol, bis(4-(((4-hydroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)phenyl) phenylphosphonate (BPH), was synthesized by reacting bis(4-formylphenyl)phenylphosphonate with 4-hydroxybenzaldehyde followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to the resulting azomethine groups. Environmentally friendly epoxy-based polymer thermosets were prepared by using epoxy resin as polymer matrix and a mixture of BPH and 4,4′-diaminodiphenylsulfone (DDS) as hardeners. A hyperbranched phthalocyanine polymer (HPc) and BaTiO3 nanoparticles were incorporated into epoxy resin to improve the characteristics of the final products. The structure and morphology of epoxy thermosets were evaluated by infrared spectroscopy and scanning electron microscopy (SEM), while the flammability characteristics were evaluated by microscale combustion calorimetry. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The surface morphology of the char residues obtained by pyrolysis was studied by SEM analysis.

Keywords: characteristics series; thermal properties; properties flammability; bisphenol; flammability characteristics

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.