LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructures and Mechanical Properties of an AlCoCrNiFe HEA/WC Reinforcing Particle Composite Coating Prepared by Laser Cladding

Photo by briangarrityphoto from unsplash

In this study, an AlCoCrFeNi HEA coating with a 10% mass fraction of WC particles was fabricated on the surface of 316L stainless steel by laser cladding technology. WC powders… Click to show full abstract

In this study, an AlCoCrFeNi HEA coating with a 10% mass fraction of WC particles was fabricated on the surface of 316L stainless steel by laser cladding technology. WC powders were formed by the partial or total dissolution of the initial WC particles with different sizes in the AlCoCrFeNi HEA coating. Micron WC particles were dispersed in the coating homogeneously, and millimeter WC particles were deposited on the bottom of coating because of their high density. The addition of the WC powers prompted Columnar dendritic and cellular grains, observed in the bottom and top regions of the coating, respectively. Additionally, this led to a higher micro-hardness and better corrosion resistance than that of the pure HEA coating.

Keywords: alcocrnife hea; hea coating; properties alcocrnife; microstructures mechanical; mechanical properties; laser cladding

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.