LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Syntheses of APTMS-Coated ZnO: An Investigation towards Penconazole Detection

Photo by javaistan from unsplash

Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized… Click to show full abstract

Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 °C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7–1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.

Keywords: syntheses aptms; coated zno; aptms coated; investigation towards; detection; zno investigation

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.