LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines

Photo from wikipedia

Polyphthalocyanines (PPCs) are a new and promising class of two dimensional materials offering versatile avenues for next generation electronic devices. For organic spintronic devices, PPCs can be engineered to tailor… Click to show full abstract

Polyphthalocyanines (PPCs) are a new and promising class of two dimensional materials offering versatile avenues for next generation electronic devices. For organic spintronic devices, PPCs can be engineered to tailor the electric and magnetic properties. In this work, we investigate PPC’s monolayers with embedded transition metal atoms (TM = Fe, Ni, Cu), utilizing first principle calculations based on spin-polarized generalized gradient approximation (SGGA). PPC sheets with central TM atoms are simulated for the dispersion curves, electronic density of states (DOS), and projected density of states (PDOS) using quantum atomistic toolkit (Quantum ATK) software. According to simulations, the FePPC supercell with four magnetic moments of Fe, aligned in a parallel ferromagnetic (FM) configuration, show the conductive FM state, while in the case of the anti-parallel antiferromagnetic (AFM) order of the magnetic moments, the material exhibits semiconducting non-magnetic behavior. FM-ordered NiPPC displays a metallic state, which is partly suppressed for AFM-ordered NiPPC. In contrast, non-magnetic CuPPC is found to be the best conductor due to its larger PDOS at the Fermi level among all considered systems.

Keywords: spin induced; transition metal; state; induced switching

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.