LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical and Experimental Studies of Al-Impurity Effect on the Hydrogenation Behavior of Mg

Photo from wikipedia

In this paper, we study the influence of hydrogen concentration on the binding energies in magnesium hydrides. The impact of aluminum atom addition on the hydrogenation behavior of magnesium was… Click to show full abstract

In this paper, we study the influence of hydrogen concentration on the binding energies in magnesium hydrides. The impact of aluminum atom addition on the hydrogenation behavior of magnesium was theoretically and experimentally defined. Doping Al into the Mg lattice allows the uniform hydrogen distribution in both the fcc and bcc Mg lattice at a low hydrogen concentration (H:Mg < 0.875) to be more energetically favorable. In addition, this leads to bcc Mg lattice formation with a uniform hydrogen distribution, which is more energetically favorable than the fcc Mg lattice when the atomic ratio H:Mg is near 0.875. In addition, compared with the pure Mg, in the Al-doped Mg, the phase transition from the hcp to the fcc structure with a uniform distribution of H atoms induces less elastic strain. Thus, the uniform hydrogen distribution is more favorable, leading to faster hydrogen absorption. Pure magnesium is characterized by cluster-like hydrogen distribution, which decreases the hydrogen diffusion rate. This leads to the accumulation of a higher hydrogen concentration in magnesium with aluminum compared with pure magnesium under the same hydrogenation regimes, which is confirmed experimentally.

Keywords: hydrogenation behavior; magnesium; hydrogen distribution; hydrogen

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.