LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural Phase Transitions and Thermal Degradation Process of MAPbCl3 Single Crystals Studied by Raman and Brillouin Scattering

Raman spectroscopy was applied to MAPbCl3 single crystals in a wide frequency range from 10 to 3500 cm−1 over a broad temperature range from −196 °C to 200 °C including… Click to show full abstract

Raman spectroscopy was applied to MAPbCl3 single crystals in a wide frequency range from 10 to 3500 cm−1 over a broad temperature range from −196 °C to 200 °C including both two structural phase transitions and a thermal degradation range. Low-frequency lattice modes of MAPbCl3 were revealed for the first time, which showed discontinuous anomalies along with the change in the number of Raman modes at the transition points of −114 °C and −110 °C. Several Raman modes related to the C–N stretching and MA rocking modes in addition to the lattice modes displayed temperature dependences similar to those of MAPbBr3 in both Raman shifts and half widths, indicating that the MA cation arrangement and H–halide bond interactions behave similarly in both systems during the phase transition. The substantial increase in the half widths of nearly all Raman modes especially suggests that the dynamic disorder caused by the free rotational motions of MA cations induces significant anharmonicity in the lattice and thus, reduces the phonon lifetimes. High-temperature Raman and Brillouin scattering measurements showed that the spectral features changed drastically at ~200 °C where the thermal decomposition of MAPbCl3 into PbCl2 began. This result exhibits that combined Raman and Brillouin spectroscopic techniques can be a useful tool in monitoring temperature-induced or temporal changes in lead-based halide perovskite materials.

Keywords: single crystals; structural phase; mapbcl3 single; raman brillouin; phase transitions; brillouin

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.