LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase Composition, Microstructure, Multiple Shape Memory Effect of TiNi50−xVx (x = 1; 2; 4 at.%) System Alloys

The phase composition, microstructure, and multiple shape memory effect of TiNi50−xVx alloys were studied in this work. The phase composition of the TiNi50−xVx system is the TiNi matrix, spherical particles… Click to show full abstract

The phase composition, microstructure, and multiple shape memory effect of TiNi50−xVx alloys were studied in this work. The phase composition of the TiNi50−xVx system is the TiNi matrix, spherical particles of TiNiV, the secondary phase Ti2Ni(V). Doping of TiNi alloys with vanadium atoms leads to an increase in the stability of high-temperature B2 and rhombohedral R-phases. An increase in the atomic volume with an increase in the concentration of the alloying element V from 1 to 4 at.% was established. Vanadium doping of the Ti–Ni–V system alloys leads to an increase in the temperature interval for the manifestation of the multiple shape memory effect. It has been established that the value of the reversible deformation of the multiple shape memory effect both during heating and during cooling increases linearly from 2 to 4% with an increase in the vanadium concentration.

Keywords: multiple shape; memory effect; shape memory

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.