The work investigates the effects of CO2 laser parameters (laser power and raster density) on wood mass loss in oak wood and impacts on its morphology, chemical structure, and surface… Click to show full abstract
The work investigates the effects of CO2 laser parameters (laser power and raster density) on wood mass loss in oak wood and impacts on its morphology, chemical structure, and surface properties (colour and hydrophilicity). The energy amount supplied onto the wood surface with a laser beam under different combinations of the irradiation parameters was expressed through a single variable—total irradiation dose. The mass loss was confirmed as linear-dependent on the irradiation dose. With the mass reduction, the roughness was enhanced. The roughness parameters Ra and Rz increased linearly with the mass loss associated with the increasing irradiation dose. The FTIR (Fourier transform infrared spectroscopy) spectroscopy also detected chemical changes in the main wood components, influencing primarily the wood colour space. Conspicuous discolouration of the engraved wood surface was observed, occurring just at the minimum laser power and raster density. The additional increasing of laser parameters caused a novel colour compared to the original one. The detected dependence of wood discolouration on the total irradiation dose enables us to perform targeted discolouration of the oak wood. The engraved surfaces manifested significantly better wettability with standard liquids, both polar and non-polar, and higher surface energy values. This guarantees appropriate adhesion of film-forming materials to wood. Identification of the changes in wood surface structure and properties, induced by specific CO2 laser-treatments, is important for obtaining targeted discolouration of the wood surface as well as for the gluing or finishing of the surfaces treated in this way.
               
Click one of the above tabs to view related content.