LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Properties of Hollow Octet Nickel Lattice Materials

Photo from wikipedia

In this study, electroless nickel plating and electrodeposition were used to deposit thin films on the polymer lattice template prepared by 3D printing, then seven Octet hollow nickel lattice materials… Click to show full abstract

In this study, electroless nickel plating and electrodeposition were used to deposit thin films on the polymer lattice template prepared by 3D printing, then seven Octet hollow nickel lattice materials with different structural parameters were synthesized by etching process at the expense of the polymer backbone. The microstructure and properties of the Octet structure nickel lattice were characterized by X-ray diffraction, Electron backscattering diffraction and transmission electron microscopy. According to the results, the average grain size of the electrodeposition Ni lattice material was 429 nm, and (001) weak texture was found along the direction of the film deposition. The lattice deformation mode changed with the increase of the lattice length-to-diameter ratio, and it shifted from the lattice deformation layer-by-layer and the overall deformation to the shear deformation in the 45° direction. The strength, modulus and energy absorption properties of the Octet lattice increased with the density, and they were exponentially related to density. In the relative density range of 0.7~5%, Octet hollow Ni lattices with the same density conditions but different structural parameters showed similar compressive strength and elasticity modulus; the energy absorption capacity, however, was weakened as the length-to-diameter ratio increased.

Keywords: microstructure properties; nickel lattice; deformation; lattice materials; lattice

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.