LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of Setting Time and Microstructural and Mechanical Properties of MK/GGBFS-Blended Geopolymer Pastes

Photo by ryanhoffman007 from unsplash

In this study, geopolymer pastes with 60% metakaolin (MK) and 40% ground granulated blast-furnace slag (GGBFS) were synthesized. To determine the influence of the alkaline activator concentration, modulus, and the… Click to show full abstract

In this study, geopolymer pastes with 60% metakaolin (MK) and 40% ground granulated blast-furnace slag (GGBFS) were synthesized. To determine the influence of the alkaline activator concentration, modulus, and the liquid/solid (L/S) ratio on setting time and compressive strength, the geopolymerization process and microstructures of MK/GGBFS-blended geopolymer pastes were analyzed using isothermal calorimetry, X-ray diffraction, mercury intrusion porosimetry, and scanning electron microscopy. Acid dissolution was employed to measure reaction extent. The results showed that the initial setting time of the geopolymer pastes was between 68 and 226 min, and the initial setting and final setting time was apart about by 10 min. For the same variable, the total heat released was positively correlated to the reaction extent. Available silicate content increased the reaction rate and intensity at the initial stage, whereas the OH− concentration controlled the reaction extent in the long term. A limited reaction extent existed in the geopolymeric reaction even if the system contained sufficient alkali content and medium. An increase in the L/S ratio increased the reaction extent. The highest reaction extent of 86.3% was found in the study. Additionally, increasing the L/S ratio reduced the compressive strength by increasing the porosity.

Keywords: reaction; geopolymer pastes; reaction extent; setting time

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.