LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage

Photo by nci from unsplash

The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the… Click to show full abstract

The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg−1 at 0.1 A g−1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.

Keywords: mn3o4 doped; operating voltage; carbon; doped carbon

Journal Title: Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.